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BIFURCATION AND LIMIT POINT INSTABILITY
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School of Information Science, Hatfield Polytechnic. Hatfield. Herts. Englandt

(Receil/td 16 March 1979; in mJued form 26 Nol1tlllbtr 1979)

AbItnct-ln recent years. considerable effort has been devoted to the study of elastic structures buckling
in two modes simultaneously. Provided there is not symmetry in both active co-ordinates, the associated
potential function is essentially cubic in as much as it is this term which determines the post-buckling
behaviour. The case of semi-symmetric potentials. where there is symmetry in just one of the co-ordinates.
has been extensively studied by Thompson and Hunt. The general cubic potential with no symmetries has
been investipted by the author while Ho proved that the worst failure of an imperfect cubic potential
system occurs when the imperfection vector is in the direction of the perfect path of putest slope.
Further. she proved that this failure is by a limit point.

Here, a study is made of bifurcations and limit points arising in general third order systems and
formulae are derived for their occurrence and for their corresponding failure loads. These are expressed in
terms of certain triaonometric polynomials derived from the cubic part of the potential. These formulae are
illustrated by consideration of a buckling model due to Thompson and Gaspar. We remove the symmetry so
that a general third order potential system is obtained.

Finally. using a theorem of Bernstein on trigonometric polynomials, we provide an alternative and we
think more intuitive proof of Ho's theorem.

I. INTRODUCTION
In investigating the buckling behaviour of a structural system at a two-fold branching point we
must consider in the perfect case. the potential energy function

(1)

where q.. q2 are the two active co-ordinates. A the change in load from the critical value and
other notation is as in [I) and (2). We do not assume semi-symmetry in the form of (1).

As discussed in [3). by changing to suitably normalised co-ordinates x and y the potential
function (1) takes the form

(2)

and the origin becomes a geometric umbilic point of the energy surface in V-x-y space. In fact.
the projections of the lines of curvature through the origin of this surface onto the x-y plane
are precisely the post-buckling path tangent projections from A-x-y space. These take the form
y =nIX where m is a root of

cm]+(2b -3d)m2+(3a -2c)m - b =0.

The perfect post-buckling paths in A-x-y space are then given by

y =nIX. A=(3a +2bm + cm·)x .

(3)

(4)

tThis paper was written while the author wu a visitor to the Department of Civil Engineering, University College
London.
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Following [1,2], for the imperfect case we may suppose a potential function of the form

where Er and E2 are major and principal imperfections in x and y respectively.
In [4], Ho used similar normalised co-ordinates to show that the lowest buckling load of an

imperfect system occurs when the imperfection vector is in the direction of the perfect path of
greatest slope and corresponds to a limit point. In Sections 2 and 3 we use such co-ordinates to
show that bifurcations can only arise on imperfect paths as the intersection of a path in the
plane of a perfect path and the A-axis with a path in the plane determined by the other two
perfect paths. This is strictly for the three path case but there are obvious modifications for the
other cases, and it also shows that the semi-symmetric view of bifurcations in [1,2], is
quite general. We also confirm here the view of [3] that hill-top branching can only occur under
the generalised spherical shell condition.

In Section 4 we use polar co-ordinates to enable us to express the potential function in terms
of a trigonometric polynomial. Formulae for the occurrence and failure loads of limit points and
bifurcations are then given in terms of these easily evaluated trigonometric polynomials.
Examples are given showing how these formulae may be used:

Finally, we utilise a theorem of Bernstein on trigonometric polynomials to provide an
intuitive proof of Ho's theorem.

2. BIFURCATIONS ON IMPERFECT PATHS

From (5), since imperfect paths are given by (8V/8x) =(8V/8y) =0 they have equations

A=3ax3+2bxy +cy2 +EI =bx2+2cxy +3dy2+E2

X Y
(6)

We note that x =y =0 corresponds to ,\ =- (Xl and so in this way the imperfect path projections
will all go through the origin in the xy-plane. Their equations are given by

(7)

If mj, mj and mk are the roots of (3) this may be written

(8)

We suppose that mj is real but mj and mk may be either real or conjugate complex.
The imperfect paths are given by (6) as curves which are the intersection of two surfaces in

A-x-y space. There is a bifurcation on this path if the curve of intersection is itself the
intersection of two space curves. This means that its projection (8) must be the intersection of
two plane curves. Writing (8) as

c(y - m;.t)(y - mjX)(Y - mtX)+ Ei(Y -~x) =0 (9)

if f; f: 0, we see that this can only occur if the imperfection vector is in the direction of one of the
perfect post-buckling paths (it may point either way along it). The path projection then becomes

(y - m;.t){c(y - mjX)(Y - mtX) +EI} =0

which is a combination of the plane paths

(10)

(11)
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The two curves in (II) meet where
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(12)

so that for a given imperfection vector in the direction mj the sign of fj can be chosen so that
bifurcation occurs. The equilibrium paths which project into (II) have equations

and

Y= m;x, A= (3a +2bmj +cm?)x +~ (13)

(14)

It follows that the sign of x in (12) can always be chosen to ensure that the bifurcation occurs
for negative Acorresponding to a change of stability at a load less than the critical load value
for the perfect model. However, it may still not be an initial loss of stability for the imperfect
system.

If mJ and mt are real, the second curve in (11) is a hyperbola with the perfect post-buckling
paths Y=mjX and y =mtX as asymptotes. If mJ and mt are conjugate complex this second
curve is an ellipse. An alternative formulation of (14) is

c(y - mjX)(Y - mtX) + fl = 0, A= 3ax + 2by + c(mj + mt)Y - cmpltX (IS)

on elimination of fl' We prove that the second part of (IS) is the plane containing the perfect
post-buckling paths Y= mjX and y = mtX. This will show that the semi-symmetric view of
bifurcations of [I] and [2], as occurring via intersections of paths in the plane of a perfect
post-buckling path and the A-axis with those in the plane of the other two perfect post-buckling
paths is true in general. These remarks are geometrically significant for the three path case but
are algebraically correct when mj and mt are complex conjugate. When mj =mt the plane in
(1S) contains the associated path.

For the proof we note that the plane containing the paths y =mjX, A=(3a +2bmj +cm/)x
and y =mtX, A=(3a +2bmt +emt2)x has equation

x y A
I nIj (3a +2bmj +em?) =0
1 mt (3a +2bmt + emt2)

On expansion this gives

,rOam, ... 2bmplt + emplt2- 3amt - 2bmA - cmlrnt) - y(3a + 2bmk + eml- 3a - 2bmJ - em/)

+A(mt - mJ) =0

and hence

x(3a - em!"t) + y(2b + e[mJ +mt])- A=0

which is the plane (1S).

3. RELATIONSHIPS BETWEEN LIMIT POINTS AND BIFURCATIONS

The equilibrium path (13) is a hyperbola with the perfect path and A-axis as asymptotes. We
have

(16)
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so that for a suitable sign of EI we have stationary points for positive and negative x of the
same magnitude. For a maximum value, EI and the perfect path slope 3a +2bmj + em? have the
same sign and x the opposite one. The equilibrium path (13) thus has a limit point at

[
E ]1/2

Xj =:!: 3a +2b~j +em? ' A2 = - 2{E,(3a +2bm; +cml>}1/2 . (17)

(18)

It is already clear from (17) that an imperfection vector in a direction of a perfect path produces a
lowest limit load in the direction of the one of steepest descent.

From Section 2bifurcations can only occur when the imperfection vector is in the direction of a
perfect post-buckling path. Further, in such cases they always occur for suitable choice of the sign
of £, even for negative A. Hence it is in order, for such an imperfection direction, to compare the
corresponding limit point and bifurcation failure loads. The bifurcation given by (12) being the
intersection of paths (13) and (14) has

[
- £ ]1/2 £

xs=:!: ( )(' )' AB=-(3a+2bmj+em?)xB--lc mj-mj mj-m. XB

where the sign of XB is chosen to ensure AS <O.
When c(mj - mj)(m; - mk) and 3a +2bmj +em? have the same sign the limit point and

bifurcation in the range A<0 appear on different paths (each path corresponding to a different
sign of EI)' When they have opposite sign they appear on the same path.

In all cases Ai - AL2 =[(3a +2bmj +cm?)xB - (£dXS)]2 j;l: 0, so that for the same perfect path
direction of imperfection vector and magnitude of E" the corresponding bifurcation load is
lower than the corresponding limit point load (these both occur for negative A). This does not
contradict Ho's theorem since the bifurcation may not correspond to an initial loss of stability.
It turns out that in the case of the perfect path of steepest descent the corresponding
bifurcation is never an initial loss of stability.

When the corresponding bifurcation and limit point appear on the same path the sizes of XL
and Xs determine which is the initial cause of failure. As shown in [1], [3] and [5], it is even
possible for them both to coincide, when we have a hill-top branching point. This is the case
when the spherical shell condition

b2 + c2
- 3bd -3ae = 0 (19)

is satisfied, see [3] and [6]. We can confirm this again since at a hilltop branching point XL = Xs.
This implies 3a +2bmj +em? = - c(mj - mj)(mj - mk)' Using (3) we obtain 3a +2bmj +2cm? =
3a - 2c - 2emjm.. which becomes em? +bm; +(e +cmjfflk) =O. By (3) again, if mA 0, em? +
bm? +emj + b = 0 which leads to e(mj +(blc»(m? +1) = O. Hence, for mj:;: 0, m, = - (blc).
Substitution in (3) yields

(20)

If b:;: 0, this is the spherical shell condition (19), while if b =0 we are back to the case mj =O.
In this exceptional case, we obtain mjfflk =- (3a/e), by equating XL and Xs and mjfflk =
(3a - 2e)/c from (3). These together imply c =3a and hence (19) still holds.

Equation (19) is hence again seen to be the condition for a hill-top branching point in which
the path in the plane determined by a perfect post-buckling path and the A-axis is crossed at its
limit point by a path in the plane determined by the other two paths. From [3], this can only
occur in the homeoclinal case.

4. USE OF POLAR CO-ORDINATES AND TRIGONOMETRIC POLYNOMIALS

In polars, (2) takes the form

VCr, 8, A) =-~ Ar+ rea cosJ 8+ b cos2 8 sin 8+c cos 8 sin2 8+ d sinJ 8)+' . . (21)

where as usual X =r cos 8. y =r sin 8, r j;l: 0 and 0~ 8< 2fT.
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For equilibrium(av/ar) =(a v/a8) =0 yielding
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- Ar + 3r(a cos) 8+ b cos28 sin 8 + c cos 8 sin28+ d sin) 8) =0 (22)

r3(b cos) 8+ (2c - 3a] cos2 8 sin 8+ [3d - 2b] sin2 8 cos 8- c sin) 8) = O. (23)

Comparing (23) and (3) we see that the solutions of (23) are 8;'. 8l, 8/, 8l, 8,,1, 8,,2 where
tan 8n

l =tan 8n
2 =mn, n =i, j, k and 8n

l and 8n
2 differ by 1T. If C(8) =a cos) 8+

b cos28 sin 8+c cos 8 sin) 8 then (22) yields the perfect post-buckling paths as

A=3C(8n'")r, n=i,j,k, m=1,2. (24)

Each path in the form (4) has been split into two paths in (24), each one starting at the origin.
C(8), being a continuous function of 8, attains its extreme values over the range 0.. 8 EO 21T

and since C(O) is everywhere differentiable and has period 21T, these extremes will be local
ones. They will thus correspond to solutions of (23). Further, since C(8 +1T) =- C(8), the
values of 8 which maximise and minimise C(8) will be some 8nI and 8n

2 corresponding to the
same mn• They always exist whether (23) has two roots or six roots. From (24), the minimum
and hence negative value of C(8) corresponds to the perfect path of steepest descent.

In polars, (5) becomes

IVCr, 8, A, E, t/J) =-2 Ar+ r3C(O) + Er cos (8 - t/J) (25)

where Ej =£cos t/J, £2 =Hin t/J, £ > 0,0 EO t/J < 21T. For equilibrium, (av/ar) =(aV/a8) =0 yield­
ing

- Ar+ 3rC(8) + £ cos (8 - t/J) =0

r3D(8)- Er sin (8 - t/J) =0

(26)

(27)

where D(8) =b cos) 8+(2c - 3a) cos2 8 sin 8+(3d - 2b) cos 8 sin2 8- c sin) O. Equation (27)
corresponds to (9) giving the imperfect path projections on the xy-plane, when coupled with
A=O. Actually, (26) and (27) give the equilibrium paths as the intersection of two surfaces. (27)
is a cylinder on the xy-plane projections and (26) is a surface with the property that each line
parallel to the xy-plane and starting at the A-axis either does not meet it or intersects it in two
points exactly, possibly coincident. Now if the equilibrium path has a local extreme with
respect to A, then the plane parallel to the xy-plane through this extreme will touch the path at
this point. Consequently so will the particular line in this plane joining this point to the A-axis.
As the equilibrium path is part of the surface (26), this line meets (26) in two coincident points
and (26) has equal roots in r for the corresponding A and 8. So at a limit point we have

(28)

(29)

Since we are interested in A< 0, (28) shows that for an imperfect path to have a limit point in
this range we must have C(0) <0 and the imperfection direction t/J chosen so that cos (0 - t/J) <
O. It further shows that the lowest limit load At occurs at the 0:: yielding the minimum C(0)
over the interval [0,21T] with direction of imperfection t/J =0:: +1T. So the lowest limit load
occurs when the imperfection is in the direction of the perfect path of steepest descent, as
shown by 80[4]. For this lowest load

2=_ .. = At _ [ - E JIf2
At 12C(OnojE, rt 6C(0:") - 3C(0::) .

We need to check that this lowest load does always correspond to an initial loss of stability.
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Trigonometric polynomials
A trigonometric polynomial is an expression of the form

i {a, sin r8 + b, cos r8}
,~O

(30)

and n is its degree.
It is easy to see that C(8) is a trigonometric polynomial of degree three. Consequently so are

all of its derivatives. In what follows we will need to calculate C(8) and its second derivative
E(8) for various 8. We shall need the expressions

a - c b - d . 3a +c 3d +b .
C(8) =-4-cOS 38+-4-sm38+-

4
-cos 8+-4-sm 8

E(8) _9(c-a) 38+9(d-b). 38_(3a+c) 8_(3d+b). 8
- 4 cos 4 sm 4 cos 4 sm.

S. CRITICAL LOADS INCLUDING BIFURCATIONS

At a loss of stability,

Iv" V"/=O.
V" V"

Further, with E(8) as defined in the last section,

V" =- A+6rC(8)

V" = 3rD(8) - E sin (8 - t/J)

V" = rE(8) - Er cos (8 - t/J) .

(31)

(32)

(33)

(34)

If we confine ourselves to the cases 8 = 8ftm, n = i, i, k, m = 1,2 and 8- t/J = 0, ± '71', then by
Section 2 this includes bifurcations and from Section 4 this includes the lowest limit load. These
conditions imply V" =0 so (33) gives

so either

or

r=6C(8"m) (35)

(36)

Under (35), when V" =0, we must have a limit point by comparison with (28). Further, it is also
clear that we must have q = 1. For (35) to give an initial loss of stability, we require V.. ~O.1f
8"m corresponds to a neptive minimum of C(8), then E(8"III)~O and hence V.. is positive.
Such 8,,111 hence ensure an initial loss of stability and in particular, it follows that the lowest
limit load always occurs at an initial stability loss. A limit point at some 8ftlll and neptive A may
not be an initial loss of stability when C(8) is a neptive maximum value. A hill-top branching
point, being both a limit point and bifurcation, necessitates both stability coefficients V" and
V" being zero. These distinctions will be illustrated in the examples where it will be shown that
neptive maximum values of C(8) can correspond, when q =1, to initial failure by either limit
point or bifurcation.
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Our restriction to the cases 9 =9,,'" allows us to consider only equilibrium paths in the plane
determined by the A-axis and the line 9=9,,"'. Equation (35) has dealt with limit points on such
paths when C(9,,"') is negative and q =1. Equation (36) deals with bifurcations on such paths.

Under (36), when V.. = 0, we have the condition for a bifurcation on these paths. It is
immediate from (36) that a path corresponding to a negative minimum value of C(9) and q = I
has no bifurcation on it as E(9) ~ O. We list the possible limit points and bifurcations in terms
of properties of C(9,,"').

(I) C(9nm) is a positive minimum (both C(9nm) and E(9nm) positive)
Bifurcations occur on an associated path with q = 0 but these always correspond to

positive A.

(II) C(9nm) is a positive maximum (C(9nm) > 0, E(9nm) <0)
There is a bifurcation on an associated with q = l. The corresponding Amayor may not be

negative.

(III) C(9nm) is a negative minimum (C(9nm) < 0, E(9nm) > 0)
There is a limit point only on the associated path with q =1. The path with q =0 has a

bifurcation which mayor may not correspond to negative A. However, in all cases, either this
path or that in (II) does correspond to negative A. But this bifurcation never corresponds to an
initial loss of stability. To see this, substitute r=[(EIE(9"1Il)))1/2 into equation (34) for V" to
obtain

which is negative.

(IV) C(9"m) is a negative maximum (both C(9n
m) and E(9n

m) negative)
There is always both a limit point and bifurcation on the associated path with q =1. Either

of these may produce the initial los of stability or they may both coincide.

6. AN EXAMPLE

In order to illustrate these ideas we consider a variation of the buckling model presented by
Thompson and Gaspar(8]. The model, shown in Fig. I, consists of a light rigid strut of length L
carrying a vertical load P. Support is provided by three linear springs initially inclined at 450 to
the horizontal plane, one in the yz-plane and the others in vertical planes making angles a and
-13 with the yz-plane.

p

J

Y

Fig. I. A view of the bucklina model.
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Following Thompson and Gaspar in [8], the state of the structure can be specified by
non-dimensional generalized co-ordinates u\ and U2 where

u1=I and u2=f

and (x, y) are the co-ordinates of the top of the strut.
We consider a family of imperfect systems characterised in the unloaded state by u. = u.o

and U2 = U20,
The extension of a general spring at horizontal angle cf> is

e(cf>, UII U2) = L{[(sin cf> - UI)2 + (cos cf> - ui'l + 1- u.2- Ul]l/2

- [(sin cf> - U.~2 + (cos cf> - U2~2 + 1- (UI~2 - (U2~2]./2} , (37)

If C.. C2 and C3 are the spring stiftnesses the strain energy in a deformed state is

U =~Cle2(O, u.. U2)+! c2e2(a, u.. U2)+! c3e2(- {3, U.. U2),

The deflection of the load is

(38)

The total potential energy function is V(u .. U2, P) = U - PE,

V(U., U2. P) =v[U.2(~ C2 sin2a +~ C3 sin2{3)+ ul(~ CI +~ C2 cos2a +~ C3 cos2 {3)

+ U\U2G C2 sin a cos a -~ C3 sin {3 cos {3) + U\3(i C2 sin3a -i C3 sin3{3)

+ UI2U2(~ C2 sin2a cos a + ~ C3 sin2{3 cos {3)

+ u\ul(j C2 sin a cos2a -j C3 sin {3 cos2 {3) (40)

+U23(~ C1 +i C2 cos3
a +i C3 cos3{3) + UIOUI(-! C2 sin2a -! C3 sin2{3)

+U20U2(-~ CI-! C2 cos2a -~ C3 cos2{3)

+U.OU2(-~ C2 sin a cos a +~ C3 sin {3 cos {3)

+U20U\(-~ C2 sin a cos a +~ C3 sin {3 cos {3)] - PL[~ UI2+~ ul]

as a truncated Taylor expansion. For simplification, we now suppose C2 sin a cos a =
C3 sin {3 cos {3. Then

V(U., U2,P) =v[UI2(~ c2sin2 a +~ C3 sin2{3)+ ul(~ C\ +~ C2COS2a +~ C3COS2{3)

+ UI3(~ C2 sin3a -~ C3 sin3{3) + U12U2(i C2 sin2a cos a +i C3 sin2{3 cos {3)

+ulul(~ C2 sin a cos2a -i C3 sin {3 cos2{3) + U23(i CI +i C2 cos3a +~ C3 cos3 {3)

-UIOUIG C2sin2 a +~ C3 sin2{3) - U20U2GC\ +~ C2coS2a +~ C3 cos2 {3)] (41)

- PLn UI2+~ul].

The generalised co-ordinates are thus diagonalised.
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Considering the perfect system for which Ulo=U2
0 =0, the equilibrium conditions Vt =V2=

oshow that UI = U2 = 0 is the trivial fundamental path.

VII =L2[~ C2 sin2 a +~ C3 sin2 (3 +~(C2 sin3 a - C3 sin3 (3)ul

+~ (C2 sin2 a cos a +C3 sin2(3 cos (3)U2] - PL

and

Vn = L 2BCI +! C2 cos2a+ ~ C3 COS2(3 + ~ (C2 sin acos2a-C3 sin (3 cOS2(3)UI

+~(CI + C2 cos3a + C3 cOS3(3)U2] - PL.

Hence, the critical loads in the two modes on the fundamental path are given by

For a compound critical point PIC =P{ =pc so we obtain

(42)

Under (42) with sin 213:Jr 0, after setting P =pc +A, we see that

V( A) - _! LA( 2+ Z)+!£ [sin a(sinz
a cos p- sinzpcos a) 3

11.,112. - 2 II. liZ 8 cosfJ III

+3 sin a cos a(sin a +sin fJ)/l12112+3 sin a cosa(cos a -cosfJ)/llul
(sin2 a sin pcos fJ +sin! {! sin a cos a - cos2 {! sin a cos a - cosza sin {! cos {! +cosl a sin (J cos p+cos3psin a cos a) l]

+ .fJ~fJ ~

+flUI + f2"2' (43)

It can be seen that UI and "2 are normalised co-ordinates and that (43) is in the form (5), with

_ I ( . 2 +sin psinacos a) 0 _ 1( ':1 +sin psinacos a) 0
EI--- sm a UI E2--- sm a "2 •2 ~13' 2 ~13

We note that when a = 13 the potential function (43) becomes semi-symmetric and we have the
model discussed by Thompson and Gaspar. We consider the application of the results of
Section 5 to the potential function (43) for different values of a and 13. We begin with values
which make the potential semi-symmetric.

Cast 1. a =13 =105°
We know, from [8], that the potential function is of anticlinal type.

C(6) =- 1.449 cos:1 6 sin 6+1.697 sin' 6.
Solutions of the corresponding eqn (3) are m =00, :t0.4259. These give rise to roots 6=(11'/2),
(3'1J'/2), 0.4026,3.544,2.739 and 5.881 of D(I).
B(I)·7.079 sin 3'-0.91OS sin 6.
C(1/'/2) -1.697, C(311'/2) = -1.697, C(O.4026) = C(2.739) =-0.3785, C(3.S44) =C(S.881) =0.3785.
B(1/'/2) =-7.9890, B(3'1J'/2) =7.9890, B(0.4026) =B(2.739) =6.261, B(3.S44) =B(S.881) =-6.261.
The s10bal minimum of C(6) occW'S at 6=(31/'/2) and the perfect path of areatest slope is in the
plane of symmetry. The imperfect path with this value of 6 and q -I gives rise to the lowest
limit point failure load A! =- 4.S13fl12• There are further losses of stability by limit point on the

ss Vol. 16. No.~F
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imperfect paths given by 8 = 0.4026 and 2.739 with q = 1 since (Ill) applies, but no initial losses
of stability by bifurcation. For 8 = (1T/2), 3.544 and 5.881 (II) applies so there is an initial
bifurcation on the imperfect paths with these 8-values and q = 1. Equation (26) shows these
occur for negative A.

The imperfect path given by 8:::: (1T/2) and q = 1 has the bifurcation failure load AB =
- 1.025£112, that by 8 = 3.544 or 5.881 and q = 1has the bifurcation failure load AB = - 2.048£112.

Case 2. a = (3 = 130°
We know, from [8), that the potential is of homeoclinal type.

C(8) = - 2.263 cos28 sin 8- 0.9194 sin3 8.
Solutions of D(8) are 8 = (1T/2), (31T/2), 0.8470, 3.9890, 2.2946 and 5.4362.

E(8) = 3.023 sin 38 -1.2553 sin 8.
C(1T/2) = - 0.9194, C(31T/2) = 0.9194, C(0.8470) = C(2.2946) = -1.130, C(3.9890) = C(5.4362)

= 1.130.
E(1T/2) = - 4.2783, E(31T/2) = 4.2783, E(0.8470) = E(2.2946) = 0.7678, E(3.9890) = E(5.4362)

=-0.7678.
The global minimum of C(8) occurs at 8 = 0.8470 and 2.2946. The perfect paths of greatest
slope correspond to these values of 8 so equation (26) with these 8-values and q = 1gives the
imperfect path with the lowest limit point failure load At = - 3.682(112. The paths given by
equation (26) and 8=3.9890 or 5.4362 do not have a limit point by (II). If q = 1, there is an
initial bifurcation on these paths but (26) shows it occurs for positive A. By (IV) there is both a
limit point and bifurcation on the path given by eqn (26) with 8 = (1T/2) and q =1. Using results
(35) and (36) we deduce that 'B < 'L so that the bifurcation is initial. Equation (26) shows that
AB = - 3.395(112. The worst failure is again as predicted by Ho.

We now look at two examples of a general cubic potential.

Case 3. a = 45°, {3 =(if

C(8) = - 0.3964 cos3 8+ 2.360 cos28 sin 8+ 0.3107 cos 8 sin28+ 1.075 sin3 8.
It is easily checked that the corresponding cubic has positive discriminant so that the cubic part
of the potential has one real root, see [3]. The corresponding cubic (3) is

0.3107m3 + 1.495m2-1.8106m - 2.36 = O. (44)

We may check that this has negative discriminant and hence that it has three real roots.
Following [3], this general cubic potential is of homeoclinal type. We show, in the appendix,
how this agrees with the semi-symmetric definition of Thompson and Hunt.

Solving (44) by a standard method we find m = 1.6276, -5.6089, -0.8313. Corresponding
solutions of D(8) are

8 = 1.0199,4.1614, 1.7472,4.8888, 2.4480 and 5.5896.
Using (31) and (32).

C(8) = -0.1768 cos 38 +0.3213 sin 38 -0.2196 cos 8+ 1.3963 sin 8.
E(8) = 1.5901 cos 38 - 2.8913 sin 38 +0.2196 cos 8-1.3963 sin 8.

C(1.0199) = 1.2772, C(4.1614) = -1.2772, C(1.7472) =1.0466, C(4.888) =-1.0466, C(2.448)
= 1.2556, C(5.5896) = - 1.2556.

E(1.0199) = -2.897, E(4.1614) = 2.897, E(1.7472) = 1.886, E(4.888) = -1.886, E(2.448)
= - 2.808, E(5.5896) =2.808.

The global minimum of C(O) and the perfect path of greatest slope occur when 0=4.1614.
Equation (26) with 0 = 4.1614 and q = 1 gives the imperfect path with the lowest limit point
failure load At = - 3.915(112. By (II), the imperfect paths given by (26) with 8 = 1.0199 or 2.448
and q = 1 have an initial bifurcation but this occurs for positive A. By (I), the imperfect path
given by (26) with 0 = 1.7472 and q = 0 has an initial bifurcation for positive A, while by (III) the
path given by (26) with 0 =5.5896 has an initial failure by limit point for negative A. Using (IV),
we find that the imperfect path given by 8 = 4.8888 and q = 1 has both a limit point and
bifurcation for negative A. From (35) and (36) we find that 'L<'. so that initial failure is by
limit point. The imperfect paths are shown in Fig. 2. As all negative initial failure loads are by
limit point Ho's result is apin illustrated.
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Fig. 2. Imperfect paths exhibitinc instability for neptive A. Paths A and B, correspondinc to , .. 4.1614 and
5.5896 become unstable at a limit point and path C, correspondinc to , .4.888, also becomes unstable at a
limit point but experiences a secondary bifurcation with a path in the plane of the other two perfect paths.

Case 4. a =45°, (J .. 1200
The cubic part of the potential (43) is

753

1.1036u)3 + 2.36u.2U2 + 1.811uIul +0.0795ul
It is easily shown that this has positive discriminant so that it has one real root. The
corresponding eqn (3) is

1.81 1m3 +4.4815m2 -0.3112m -2.36 =0. (45)

This cubic has negative discriminant and hence three real roots. Following [3] and the appendix,
our general cubic potential is of homeoclinal type.

Solving (45) we find m = 0.6715, - 2.3036, - 0.8424, yielding roots 8=0.5914,3.7329, 1.9804,
5.1219,2.4415 and 5.S831 of D(8).
Using (31) and (32),

C(9) = -0.1768 cos 38+0.5701 sin 38+ I.280S cos 8+0.6496 sin 8.
8(8) -I.S917 cos 38 -S.l311 sin 38 -1.280S cos 8-0.6496 sin 8.

C(0.5914) = 2.0193, C(3.7329) = - 2.0193, C(I.9804) = - 0.2719, C(S.1219)" 0.2719, C(2.44IS)
.. -O.lS80, C(5.S831) = 0.1580.

8(0.5914) = - 6.7720, 8(3.7329) = 6.7720, 8(1.9804) = 3.1343, 8(5.1219) = - 3.1343, 8(2.44IS)
=-3.0638,8(5.5831)=3.0638.

The global minimum of C(9) occurs when 9=3.7329. The worst limit point failure load occurs
on a path (26) with 9=3.7329 and q = 1and is given by At = -4.923f I/2• A further use of all)
shows that there is an initial limit point failure on the imperfect path given by (26) with
() =1.9804 and q = I for negative A. The imperfect path given by (26) with 8 .. 5.5831 and q .. 0
is covered by (I) and there are no limit points or bifurcations on it for neptive A. Two of the
remaining imperfect paths of the type (26) are covered by (11), when 8 = 0.5914 and S.l219 with
q • 1. There is no limit point but an initial bifurcation on each for neptive A. For 8· 0.5914,
A. - -0.2744f1n while for 8" 5.1219. A.· -1.310. There remains 8· 2.4415 which is covered
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Fig. 3. Imperfect paths eXhibitina instability for neptive A. Path A, correspondina to 8= 0.5914, becomes
unstable al a bifurcation with the path B in the plane of the other two perfect paths. Paths C and D show
failure by limit point, the latter havina the lowest failure load for fixed mqnitude of imperfection. Path E.
correspondina to 8=2.4415, becomes unstable at a bifurcation with the path F in the plane of the other two
perfect paths. There is a secondary limit point on path E. Path G, correspondina to 8= 5.1219, becomes

unstable at a bifurcation with path H in the plane of the other two perfect paths.

by (IV). The corresponding imperfect path given by (26) and q =1 has both a limit point and
bifurcation for negative A. Results (35) and (36) show that rB < rL and hence initial failure is by
bifurcation. The important imperfect paths are shown in Fig. 3. From (26) we find AB =
-2.021E J12• Ho's theorem is again illustrated.

7. AN INTUITIVE PROOF OF HO'S THEOREM

Ho's theorem
For the cubic type discussed here and a fixed magnitude E of the imperfection vector, the

lowest failure load producing an initial loss of stability occurs when the vector is in the
direction of the perfect path of greatest slope. Further, it always occurs at a limit point.

Our proof follows naturally from the observations (I)-(IV) made so far and the expression
of C(8) and E(6) as trigonometric polynomials. We require

Bernstein's theorem
If T(8) is a trigonometric polynomial of degree n then

IT'(8)/"n . max IT(6)1.

A proof may be found in Zygmund's book [6], or in Bary's book[7].
It follows immediately from Bernstein's theorem that

IE(6)1" 91 C(8::·)1 (37)
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Proof of Ho's theorem
We already know that the lowest limit load occurs when the imperfection is in the direction

of the perfect path of steepest descent and that this does represent an initial loss of stability. By
(lHIV) we need only compare this lowest limit load with bifurcations of types (II) and (IV).

We consider first a bifurcation of type (II). Here, C(8,,"') > 0 and E(8,,"') < 0 while q =1. By
(26)

A= 112{ 3C(6,,"') -[-E(6",)]I12}= 112{3C(8,,"')+E(811"')}

E [_ E(8"mW12 " E [_ E(8
11
",)]112 •

The assumption that'\ is negative implies -E(8"m»3C(8,,"').

,\2=_E~8"",) {9C2(8,,"') +6C(8"m)E(8"m) +E2(8,,"')} =E{~~~:::~ -6C(8"m)- E(8,,"')}

<E{~~~::l 6C(8Il
m)- E(8,,"')} =E{-3C(81l"')-E(8,,"')}

<-EE(8,,"')

< - E9C(8::) by (37)

< - E12C(8::)

=A~.

We now consider a bifurcation arising from case (IV). when it produces the initial stability
loss on a path also containing a limit point. C(t/,,"') and E(8"m) are both negative with q = I,
while we must have IE(8"m)1> 3IC(81l"')/. By (26)

,\ =EI12{ 3C(8"m) _ [_ E(8 "')J1I2}
[- E(8"m)]i12 "

,\2 =E{~~~:::~ 6C(8,,"')- E(8,,"')}

< E{~~(~";l 6C(8,,"') - E(8,,"')}

= E{-3C(8"m)- E(81l"')}

~E{-3C(8::)-9C(8::)} by (37)

=- E12C(8::)

=.\t.

These two results prove Ho's theorem.
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APPENDIX
Following [3], a general cubic potential is anticlinal if its cubic part and hence (3), has three real roots and homeoclinal

if its cubic part has one real root and eqn (3) three real roots. Clearly, for an anticlinal potential C(lI) and 1)(6) both have
six real roots while for a homeoclinal potential C(6) has two real roots and 1)(6) six.

The semi-symmetric view of Thompson and Hunt is that an anticlinal potential has the symmetric projection of the two
coupled paths fallina in the direction opposite to that of the uncoupled path while a homeoclinal potential has them falling
in the same direction.

We point out that the general algebraic definition in [3], for the three path cases, can be interpreted in a manner akin to
that of Thompson and Hunt.

Let 6,1, 6,.., 8,·, 6.2, 6,.2, 6l be the six roots of (23) occurring in the interval 0.. 6<2,.. in order of magnitude, where
tan 8." =m., n=1,2,3, '" = 1,2. As ,.2 = 6.1+,.. any three consecutive 6.· lie within a range of fl. We also recall from
(24) that C(8:') is one third of the slope in the rA-plane of the post-bucklina path with 6= ':' and starting at the origin.
We list the range of possibilities for the sips of C(8•• ).

8 C(8)

8,' +. + + +
82

1 + + + +
8,· + + + +
81

2 + + + +
8l + + + +
8l + + + +

81
1+2,.. + + + +

Case (a) Case (b) Case (c) Case (d) Case (e) Case (f) Case (g) Case (h)

There can be no further changes of sian of C(8) between consecutive 8.'"-values as there would have to
be an even number of them and hence there would be a solution of (23) between consecutive 8."-values, a
contradiction.

It follows that cases (a) and (b) provide six roots of C(6) in an interval of length 21T and hence
correspond to an anticlinal potential wtWe the remaining cases provide only two roots of C(8) in an interval
of lenath 21T and correspond to a homeoclinal potential.

We hence see that for a homeoclinal potential we can find three conslcutivl paths falling in the same
direction with respect to the A-axis, either all above the rf-plane or all below. For the anticlinal potential we
cannot even find two consecutive paths falling in the same direction with respect to the A-axis.


